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A control volume analysis of the compressible viscous flow about an aircraft is performed, including integrated
propulsors and flow-control systems. In contrast to most past analyses that have focused on forces and momentum
flow, in particular thrust and drag, the present analysis focuses on mechanical power and kinetic energy flow. The
result is a clear identification and quantification of all the power sources, power sinks, and their interactions, which
are present in any aerodynamic flow. The formulation does not require any separate definitions of thrust and drag,
and hence it is especially useful for analysis and optimization of aerodynamic configurations that have tightly
integrated propulsion and boundary-layer control systems.

Nomenclature

wingspan and chord

dissipation coefficient

skin friction coefficient

induced drag

profile drag

wave drag

surface element of control volume

volume element of control volume

9 axial kinetic energy deposition rate
pressure-work deposition rate

transverse (vortex) kinetic energy deposition rate
lateral wave-outflow energy deposition rate
streamwise force from lateral outflow velocity V,,
streamwise force from axial velocity u
streamwise force from transverse velocities v, w
total streamwise, normal aerodynamic forces
boundary-layer shape parameter, =§*/6
kinetic energy shape parameter, =6*/6
climb rate, =V siny

mass flow

unit normal vector, out of control volume
kinetic energy inflow rate

shaft power

volumetric power

static pressure, total pressure

chord Reynolds number, =V c/v

mom. thickness Reynolds number, =u,6/v
thrust

time

perturbation velocities

shear layer velocities (in shear layer section)
fluid velocity, =(Vy + u)x + vy + wz

side cylinder normal velocity, =vn, + wn,
fluid speed squared, =V - V

aircraft weight

Cartesian axes

airfoil circulation

climb angle

wake kinetic energy excess thickness
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£ = mechanical energy outflow rate

0, 6* = momentum, displacement thicknesses
0*, §** kinetic energy, density-flux thicknesses
05 b = fluid density, viscosity

T = viscous stress tensor ~

T = surface viscous stress vector, =7 - i
P = dissipation rate

Subscripts

00 = freestream quantity

B = quantity on body surface

o = quantity on outer boundary

e = shear layer edge quantity

Superscripts

SC = quantity on side cylinder

TP = quantity on Trefftz plane

L

N UMEROUS previous workers have analyzed the flow about an
aerodynamic body via a control volume approach to relate the
body forces to the wake and the flow far field. The early work of Betz
[1], Jones [2], and Oswatisch [3] focused on drag, whereas Maskell
[4] considered both lift and drag for incompressible flow, and Kroo
[5] reviewed various techniques for induced drag prediction and
reduction. The recent efforts of VanDam [6], Giles and Cummings
[7], and Kusunose [8] have treated the general compressible case,
also with enthalpy addition from engines. More recently, Méheut and
Bailly [9] have done an overview and comparison of most of the
previous analyses and approaches for the drag component, and
introduce their own refinement. Spalart [10] performs an even more
detailed analysis for the incompressible case using inner and outer
expansions of the far wake, and identifies a higher-order far-field
term in the overall axial force which has been previously neglected.

The goals of the previous developments have been to allow
accurate wind-tunnel drag measurements from wake surveys, with or
without wind-tunnel wall interference, and also to allow accurate
drag computation from computational fluid dynamics (CFD) results
despite the presence of imperfect freestream boundary conditions
and numerical errors. Additional benefits have been the clear
identification of drag-producing sources in the flow and the relation
of experiments and CFD results to other classical analyses such as
lifting-line theory.

All the previous work has focused almost exclusively on
momentum equation analysis, giving relations for the aerodynamic
lift and drag forces. The implied propulsive power was then simply
defined to be drag x velocity. Thermodynamic and state relations
were also introduced, but only as a means to relate velocity and
pressure to enthalpy and entropy in the downstream wake. In
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contrast, the present analysis will begin with the mechanical energy
equation from the outset, giving relations between mechanical power
and dissipation in the flowfield. The result is especially applicable for
evaluation of complex aerodynamic configurations, particularly
ones with tightly integrated propulsion and boundary-layer control
systems.

It is worthwhile here to mention related work done for turbo-
machinery applications. Denton and Cumpsty [11] and also Denton
[12] examined the dissipation and associated entropy and loss
generation mechanisms on turbomachinery blading, wakes, and tip
gaps. Greitzer et al. [13] also did an overview and further analyses of
various flow situations. In the context of the present work, the
previous turbomachinery work would be particularly relevant for
estimating the losses of flow-control systems and associated ducts
and impellers.

II. Control Volume Definition

Figure 1 shows the control volume (CV) surrounding the flow
around an aerodynamic body. The CV boundary S is partitioned into
an inner boundary S lying on the body surface and an outer
boundary S, lying in the flowfield. Together with Gauss’s theorem,
we therefore have

///V-()dV:#().fzdS:#().ﬁdSB_F#().ﬁdSO
(1

where () is any field vector quantity. The outer-boundary S,
portions will be assumed to be oriented so that 1) the downstream
Trefftz plane portion STF is oriented perpendicular to V,, and 2) the
side cylinder portion S¥C is parallel to V. These restrictions will
considerably simplify most of the integral expressions to be derived.

The distance to the outer boundaries is completely arbitrary.
However, it will be highly advantageous to place them so that 1) all
vortical fluid leaves via STF, while any supersonic oblique waves
which are present leave via SSC, and 2) the distance to the side
cylinder is at least several times the wingspan of the configuration.
Unlike the first set of restrictions, these two are not hard require-
ments; however, they do have the great advantage of isolating
different physical flow processes in separate terms in the equations.

)

III. Periodic-Unsteady Treatment

The present work will address steady or periodic-unsteady aero-
dynamic flows. The latter case must be addressed, because
mechanical propulsors, impellers, or even flapping wings are treated
as part of the flowfield. Their periodic unsteadiness produces
nonzero nonlinear-term contributions to the time-averaged flow.

Consider the periodic-unsteady velocity components i, v, which
can be expanded about their mean values i, v in the form

Fig. 1 Two-dimensional cutaway view of 3-D CV surrounding an
aerodynamic body. The inner boundary Sy lies on the body and may
cover moving elements (top propulsor) or hide them inside (bottom
propulsor). Vortex-wake velocities v, w on Trefftz plane are not shown.

- _ = . 27kt
a(x,y,z,0) = u(x,y,z) + Z u(x,y,z)sin )

k=1 p

2kt

o(x,y,z, 1) =v(x,y,2) + Z v (x,y,2)sin 3)

k=1 p

where 1, is the period. Time averaging the velocities and their
quadratic products then gives

| L. _
u(x,y,z)z—/ undt=nu “4)
tp 0
1 [t .. Ry |
uv(x,y,z)zt— uvdt:uv—}—ziukvk )
pJO

which mimics the Reynolds-averaging procedure for turbulent flows.
Similar expressions can be obtained for cubic or higher products.
Also, phase differences can be introduced by adding cosine-
expansion sums, which will also result in additional coefficient-
product sums.

In brief, product quantities such as uv imply the presence of
unsteady-coefficient-product sums such as Z%ukvk, etc., which
will be omitted for brevity in the expressions. These omitted sums
are expected to be important only for cases with large-scale
unsteadiness, such as flapping wings. For such cases, the missing
sums can then always be added to the various CV quantity spatial
integrands to obtain the exact time-average form.

IV. Mass and Momentum Analysis

Although this work will focus primarily on a mechanical energy
analysis, a brief mass and force analysis is necessary to simplify the
later results.

A. Mass Relation

The time-averaged mass continuity equation for fluid flow is as
follows:

V- (pV)=0 (6)

As described in the previous section, the unsteady-coefficient-
product sum Y %kak is implicitly present inside the divergence,
but has been omitted for clarity. Forming the volume integral

/ / {Eq. (6)} dV over the CV and invoking relation (1) then gives

the following integral mass equation:

iy = itg )
mBz_#pV'ﬁdSBszue]:O 3
”Io:#ﬂv'ﬁdscz:mfuel:o &)

These will be used only to manipulate and simplify other subsequent
integral relations. As indicated, the fuel mass flow will be considered
negligible.

B. Momentum and Force Relations

The time-averaged momentum equation in divergence form is as
follows:

V- (pVV)=-Vp+ V-1 (10)

Forming the volume integral / {Eq. (10)} dV over the CV and

invoking relation (1) then gives the integral momentum equation



Fy=F, an

where the following definitions have been made.
Net force on body, including propulsors

FB:#[(pﬁ—r)+VpV~ﬁ]d$B (12)
Outer-boundary force, momentum flow
Fo=b=lp = poii+ (V= VooV -ilds,  (13)

In the Fj, definition, the surface shear stress vector T = 7 - /i has been
introduced for convenience. In the F, definition, p has been replaced
with p — p., which is permissible because of the general relation

#ﬁdS:O (14)

for any closed surface. Also, V has been replaced with V —V
which is permissible because of the mass relation (9).

The x axis is now chosen to lie along the flight path. Then, for
steady unbanked flight at some climb angle y, in a still atmosphere,
we have

Fp=F,=Fx+0y+Fz (15)
—F,=Wsiny (16)
F,=Wcosy (17)

where F, is the net streamwise aerodynamic force, F_ is the net
normal aerodynamic force, and W is the weight. F, will now be
related to the outer-boundary integral in the F, definition.

C. Streamwise Force Decomposition

With the Trefftz plane and side cylinder boundaries defined
perpendicular and parallel to V , the streamwise x component of the
outer force (13) reduces to the following:

Fo= [0 = b+ putvic 4 wasE + [ ~puv, asie
18)
To put the first integral in Eq. (18) into a more convenient form, for

later use with the kinetic energy analysis, we make the exact
substitution

Voot =3(V2 = V3) —3(u® + v + w?) (19)

which gives a natural decomposition of the net streamwise force into
three components:

F.=F,+F,+F, (20)

F,= f/%,o(v2 + w?)dSTY (22)

F,= /f —puV, dss¢ 23)

The F, component is the net “profile drag—thrust” force associated
with the axial perturbation velocity u. For low-speed flow and small
u K Vg, itis effectively a total pressure defect

F,~ /f [pr. — p]dST — O(pu) (24)
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whose integrand is negligible outside the viscous wakes and
propulsion plumes. In contrast, the bulk of the F, integrand in
Eq. (22) comes from the trailing-vortex potential crossflow over the
entire Trefftz plane, and hence is closely related to the induced drag
D; which will be discussed later. The remaining F, term is zero for a
sufficiently distant side cylinder in subsonic flow and equal to the far-
field wave drag D,, in supersonic flow, which will also be discussed
later.

In most force analyses of aircraft, F, is typically separated into
profile drag and thrust:

F,=D,-T 25)

However, this decomposition is often ambiguous for aircraft whose
propulsion system is closely integrated with the airframe and for
aircraft which employ powered lift or boundary-layer control
systems. It will be seen that, in the present power-based analysis,
decomposition (25) is entirely unnecessary.

Most of the previous workers mentioned in the Introduction have
further manipulated the F', expression into equivalent forms in terms
of entropy and total enthalpy. The F, or D; expression has also been
manipulated into an equivalent form in terms of the crossflow stream
function and the streamwise vorticity. Here, these alternative forms
will not be used because they are not particularly useful in the
subsequent mechanical energy analysis.

V. Mechanical Energy Analysis
A. Mechanical Energy Relation

Forming the dot product {Eq.(10)}-V gives the mechanical
(kinetic) energy equation in divergence form:

V. (pV%Vz) =-Vp-V+(V-0)-V (26)

Using the general vector identities

V-(pV)=Vp-V+pV-V 7

V-@-V)=(V-7)-V+(z-V)-V (28)

the right side of Eq. (26) is expanded as follows:

v.(pvgw) =-V-(pV)+pV-V+V-F-V)=(T-V)-V
(29)

We now form the integral / {Eq. (29)} dV over the entire CV, and

apply relation (1) to give the following integral mechanical power
balance equation

Ps+Py+Py=E+ @ (30)

where the five terms are defined in Eqs. (31-35). The substitutions
p— Pp—Ps and V2 — V2 —V2 have been made as in the
momentum equation analysis.

The three terms on the left side of Eq. (30) represent the total
mechanical power supply, production, or inflow, ultimately from
fuel, batteries, or other sources. The two terms on the right represent
power consumption or outflow, via various physical processes. The
balance holds instantaneously in steady flow or as a period average in
unsteady-periodic flow. A major goal of the present paper is the
determination of the total power required for flight, via the prediction
and estimation of the right-hand side terms in Eq. (30) or its
equivalents to be derived later.

Net propulsor shaft power

Py = #[—(p pi 1] VS, 31)
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This is the integrated (force) - (velocity) on all moving body
surfaces, and hence is the net total propulsor shaft power or wing-
flapping power for all the components on the aircraft that are covered
by the body control volume surface S. If individual turbomachinery
component blading is defined to be covered by S, such as for the
upper propulsor in Fig. 1, then P will include positive contributions
from a compressor and negative contributions from a turbine. If the
aircraft has powered lift or other boundary-layer control systems
whose impeller blades are covered by S, then P will also include
the shaft power of the impellers.
Net pressure-volume “P dV” power

Pv=[[[ - pov-vey (32)

This is a volumetric (or P dV)) mechanical power provided by the
fluid expanding against atmospheric pressure. Its integrand will have
strong net contributions at locations wherever heat is added at a
pressure far from ambient, for example, if a turbomachinery
combustor is chosen to be inside the CV or if external combustion is
present, as in some hypersonic vehicles. In supersonic wave regions,
the Py integrand may be nonzero, but will cancel when integrated
over all points whose streamlines reversibly return to the freestream
state before exiting the CV. Obtaining this cancellation is the main
motivation behind defining the CV such that the wave system exits
through the side cylinder and ahead of the Trefftz plane.
Net propulsor mechanical energy flow rate into the CV

Py = #—[(p — Poo) +30(V2 = Vio)]V ndSy - (33)

This is the net pressure-work rate and kinetic energy flow rate across
Sp and into the CV. This accounts for power sources whose moving
blading is not covered by Sp or whose combustors are outside the
CV, such as the bottom propulsor in Fig. 1. Note that 72 points into the
propulsor, so that the nozzle has V-7 <0, and Py >0 for a
propulsor with net thrust, as expected.

Mechanical energy flow rate out of the CV

&= // [(p — Poo) +10(V2 — vza](voo + u)dST
+ /f [(p —pa) +lp(V — V§o>]vn 4S5 (34)

This is the net pressure-work rate and kinetic energy flow rate out of
the CV, through the Trefftz plane and side cylinder boundaries.
Viscous dissipation rate

@:// (Z-V)-vay (35)

This measures the rate at which kinetic energy of the flow is
converted into heat inside the CV. The dissipation mechanism is the
viscous stresses T working against fluid deformation, the latter
related to the velocity gradients VV. In practice, most of the
dissipation occurs in the thin boundary layers on the aircraft surface,
including the propulsion elements, and also in shock waves. If
powered lift or boundary-layer control systems are present, then the
air in the suction or blowing plumbing can be considered as part of
the flowfield, and the dissipation inside the plumbing would con-
tribute to the overall . Additional dissipation also occurs in the
downstream wakes and jets, as shown in Fig. 2 and discussed later.

B. Energy-Outflow Rate Decomposition

The total energy rate £ definition Eq. (34) captures the outflow of
all mechanical energy regardless of type or origin, making the power
balance Eq. (30) somewhat difficult to apply and interpret. To clarify
the situation, we now use the F, definition Eq. (18), the weight
relation (16), and the velocity relation (19), and exactly decompose £
into five separate components:

DRELA

Surface Free Free

boundary-layer shear layer vortex
dissipation dissipation dissipation
Dprop

|
\d)jc[ ]
jq)wake

/\ iq)vnr(ex
C X Dyortex

Durface

Y

Fig. 2 Dissipation in various flow regions inside the CV. Not shown is
additional dissipation which may occur inside any flow-control system
ducting. Also not shown is dissipation in shock waves.

E=Wh+E,+E,+E,+E, (36)

each of which has a relatively clear physical origin. The result is the
following alternative and equivalent form of the integral power
balance equation:

Ps+Py+Pc=Wh+E,+E +E,+E,+® (37

where the five & components are defined next.
Potential energy rate

Wh=—-F.V,=WV_siny (38)

This is simply the power consumption needed to increase the
aircraft’s potential energy and becomes a power source during
descent. The decomposition (37) therefore isolates this reversible £
component, leaving the remaining four components to capture all the
irreversible outflow losses.

Wake streamwise kinetic energy deposition rate

E,= // % pu* (Voo + u) dSY (39)

This is the rate of streamwise kinetic energy being deposited in the
flow out of the CV, through the Trefftz plane. Note that this is always
positive, both in the case of a propulsive jet where the axial
perturbation velocity u is positive and also for a wake where u is
negative (assuming no reverse flow in the Trefftz plane, or
Ve +u>0).

Wake transverse kinetic energy deposition rate

E,= // % p(V? + w?) (Vo + u)dST (40)

This is the rate of transverse kinetic energy being deposited in the

flow out of the CV. For u < V,, v, w, this is in fact the same as V

times the induced drag D, for the case of a relatively nearby Trefftz

plane where the vortex wake has not yet dissipated significantly.
Wake pressure-defect work rate

E,= / (P — Poo)udSE @1)

This is the rate of pressure work done on the fluid crossing the Trefftz
plane at some pressure p different from the ambient p .
Wave pressure-work and kinetic energy outflow rate

E,= // [p — Poo +5p(u* + 07 + wz)] V,dS5 (42)

This is the pressure-work rate and kinetic energy deposition rate of
the fluid crossing the side cylinder. Normally this will be significant
only in supersonic flows, in which the E, integrand on SC is
dominated by the oblique wave system, for which the integrated
contribution to £, is equal to the wave-drag power.

For subsonic 3-D flows, the E,, integrand for a lifting wing rapidly
decays as 1/r* and hence becomes negligible for a sufficiently
distant side cylinder. For a relatively nearby side cylinder, the Ew
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integral is nonzero for a subsonic wing, but in this case it merely
accounts for the transverse kinetic energy not fully captured in E,
because of the small Trefftz plane that accompanies a nearby side
cylinder.

VI. Energy-Outflow Estimation and Characterization

The power balance relation (37), together with the E component
definitions from earlier, is exact as written and does not require
identification of rotational and irrotational regions over the Trefftz
plane. However, it is useful to briefly identify such regions to
compare relation (37) to previous force-based analyses.

A. Potential-Flow Regions in Low-Speed Flow

Outside of the viscous wakes and propulsion plumes, the pressure
defect in low-speed flow is given by the Bernoulli relation:

P = Poo = —5p(V2 = V3) = —pVou — 3p(u® + v* + w?) (43)

The sum of the three Trefftz plane E components then reduces
exactly to the standard induced drag expression times V. :

El,+E,)—|—Ep=//Ep(v2—|—w2—u2)vmd6’g’ (44)

— DV, 45)

This sheds further light on the somewhat perplexing —u? term in the
D; integrand, which seems to run counter to kinetic energy
arguments. The negative sign originates from the pressure-work term
E »» Which is negative and twice as large as the true axial kinetic
energy loss term E,. The same pressure-work mechanism was
recently identified by Spalart [10] via his entirely different force-
based analysis.

B. Wave System

For any small-disturbance Mach wave, the following relations can
be obtained from oblique-shock theory:

P = Poo = —puVoo — 3pu M3, (46)

wM% = u? + 0% + w? 47)

The E,, component then becomes

E,= // —puV,Vy, dSC (48)

=D,V (49)

and, as expected, the energy loss rate from the outgoing wave system
is simply the power needed to overcome the far-field wave drag.

C. Inviscid Flow Examples: Two-Dimensional Airfoil and Three-
Dimensional Wing

For the simple case of an inviscid low-speed 2-D airfoil, the
perturbation velocities at distances greater than the chord rapidly
asymptote to those of a point vortex having the airfoil’s circulation I'.
The energy rate integrals can then be readily evaluated for an infinite
Trefftz plane at some location x > O(c):

V.I?b
= (50)
V. I2b
”:pSn x S
_ pVeI?D -
P A x (52)
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E,+E,+E,=0 (53)

where b is the arbitrary span of the integration. Although the
individual £ components are quite large near the airfoil due to their
1/x behavior, they sum up exactly to zero for this inviscid 2-D case.
This can also be seen from the original total & definition (34), in
which the integrand is zero for this constant total pressure case. This
inviscid case also has @ = 0, and so the net required power as given
by Eq. (37) is zero as well, as expected.

Figure 3 compares the variation of the three Trefftz plane E
components Eqs. (50-52) for the 2-D airfoil, with the corresponding
components for a lifting inviscid 3-D wing, the latter integrated
numerically for a rigid wake with spanwise elliptical loading.

In the 3-D wing case, the total energy loss rate is also constant, but
equal to D,V rather than zero. In 3-D, the individual E components
also decay much faster than in the 2-D case, with each component
very nearly reaching its final value within a fraction of the span b:

E,+E,+E, =DV, ~pV,I? (54)

for the 3-D wing.

In the subsequent discussions, these 2-D and 3-D potential-near-
field transients in the individual E,, E,, E », components will be
excluded, because they cancel in the overall E sum.

D. Viscous Flow Power Balance Versus Trefftz Plane Location

It is important to note that Eq. (37) holds for any position of the
side cylinder and Trefftz plane boundaries, provided & is defined as
only the dissipation inside the CV. Figure 4 shows how the individual
terms in Eq. (37) vary as the Trefftz plane is progressively moved
downstream.

The E,, term defined by Eq. (39), initially equal to some fraction of
the net axial-force power F,V,,, decays relatively quickly as the
axial velocity perturbation u# decays by mixing and diffusion, with
the lost energy appearing as the @, + ;. part of the overall
dissipation ®. After a much greater distance downstream, the
transverse velocities v, w of the trailing vortices also eventually
diffuse, and the transverse kinetic energy integral E,, initially equal
to D;V,,, decays accordingly. Again, the dissipation ¢ is cor-
respondingly increased by the &, part, so that the total power
remains unchanged.

VII. Dissipation Estimation and Characterization
A. Dissipation in Trailing Vortices
As indicated by Figs. 2 and 4, all power sources Pp,Py, Py in
excess of the potential energy rate Whare eventually balanced by the

E, o 3-D wing
Ea
+ X
0.16 0.2b 0.3b 0.4b

2-D airfoil

EP

Fig. 3 Energy loss rate components versus position of Trefftz plane for
inviscid 2-D airfoil and inviscid 3-D wing. For 2-D airfoil, the total loss
rate is zero. For 3-D wing, the total loss rate is constant and equal to
D,V . The individual Ea, Ev, EI, terms asymptote very rapidly in the 3-D
case.
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A S B A [

Dsurface

Fig. 4 Variation in power balance terms in Eq. (37) versus position of
Trefftz plane. Transverse velocities of trailing vortices diffuse much later
than the axial velocities of propulsors and wakes. Total dissipated power

sum is unchanged. The potential-near-field contributions to E",,, Ev are
excluded, E, is not shown, and E,, is assumed to be zero.

dissipation @ if the Trefftz plane is extended sufficiently far
downstream. In practice, it is advantageous to place the Trefftz plane
close enough so that the EU ~ D;V,, contribution from the
dissipation of trailing vortices can be kept separate in the power
balance in Eq. (37). The reason is that D; can be reliably estimated by
other relations, such as the classical result for a planar elliptically
loaded wing without thrust vectoring, for which F, = L:

LZ
Di=—F—— 55
1 pVEmb? (53)
Hence, with such alternative E , calculation methods being available,

E, or @, do not need to be calculated directly from their
definitions.

B. Dissipation in Propulsor Jets

The jet dissipation ®;,, of the isolated propulsor indicated in Fig. 2
represents the Froude propulsive (in)efficiency, and hence can be
calculated from the disk loading and actuator-disk theory, or from
propeller theory, or simply from known propulsor performance:

q)jct = PS(I - nFroudc) (56)

As with &, ..., such alternative models eliminate the need to
calculate @y directly. If Eq. (36) is used, then it is simplest to lump it
into the left side of Eq. (37) by replacing Pg with 9g.guqcPs-

C. Dissipation on Propulsor Blading

The ®,,,, in Fig. 2 represents the dissipation in the propulsor’s
blading boundary layers and is otherwise known as profile losses.
This can be computed directly via integration over the blade surface
using the dissipation coefficient (discussed later) or by radial blade-
element integration using the blade profile-drag coefficients, or
simply by a known overall profile efficiency if that’s available:

cImep = PS(I - nprofile) (57)

D. Dissipation and Power Loss in Shock Waves

The presence of shock waves will make the various terms in the
power balance relation (37) have additional contributions. Figure 5
shows the various shocks which might be present on a transonic or
supersonic aircraft. The losses of the nearby strong shocks are best
added via the dissipation term @, whereas the losses of the distant
waves are best added via the E,, term.

1. Nearby Strong-Shock Losses
The dissipation of a shock is given by

q>shock = /] AptV : ﬁshock dSshock (58)

Dshock Dshock

/
hock

ﬁs

ds shmk\
Q/\

Fig. 5 Dissipation in strong shocks near aircraft and wave pressure-
work and Kinetic energy outflow through the side cylinder.

where the integration is over the shock surface with unit normal
Aghock- The total pressure drop Ap, depends on the normal Mach
number M | via standard normal-shock relations.

2. Outer Wave System Losses

The integrand in Eq. (58) scales as Ap, ~ (M, — 1)3, which
becomes very small as the waves propagate away from the aircraft,
where M| — 1. The dissipation therefore requires a great distance to
run to completion, and hence is better represented by the E,, term in
the power balance Eq. (37), as discussed previously, and estimated
by Eq. (48). This E,, can be determined by various wave-drag D,,
estimation methods, such as those of Jones [14] for linearized
supersonic flow.

E. Dissipation in Shear Layers and Wakes

Because the components of ® and E associated with induced drag,
propulsion losses, and shock waves can be expressed or estimated as
discussed earlier, we then only need to consider the remaining
dissipation components P ;... and P, due to the surface
boundary layers and trailing wakes. For the remainder of the paper
we define x, y, z to be the traditional locally Cartesian shear layer
coordinates, where x, z lie on the surface and y is normal to the
surface and across the shear layer, as shown in Fig. 6. Also, u, w will
denote the total x,z velocity components.

The dissipation integrand in Eq. (35), which in full contains nine
terms, reduces to only two dominant terms in a 3-D shear layer

9 9
D~ / / / (zxy a—z +r, a_l;)) drdydz (59)

or just one term in a 2-D shear layer

CDZ//].rxva—u dxdydz (60)
Y ay

Fig. 6 Boundary-layer profile on surface, with locally Cartesian x, y, z
axes. The x axis is defined to lie along edge velocity u,.



A 2-D shear layer is defined as one with a planar velocity profile, or
w = 0. For brevity in the subsequent discussion, the 2-D form will be
assumed. The w term can always be added if needed to give the 3-D
form.

The shear stress consists of the laminar plus turbulent Reynolds
stress:

ou —
Ty = H’@ - ,OM,U/ (61)

2
P = ///[p,(%) — pﬁg—i] dxdydz (62)

Since —pu'v’ in conventional shear layers has the same sign as
du/dy, the dissipation integrand is strictly positive, as expected.

1. Dissipation Coefficient

For a shear layer, itis convenient to express @ sices Pprop> OF Pyyake
in terms of a dissipation coefficient C (x, z) defined for each point on
the shear layer:

@:ﬂﬁ@%m& 63)

This is directly analogous to defining friction drag in terms of a skin
friction coefficient,

1

except that C, is nonzero on a wake.

Using Cp, rather than C; has a number of advantages:

1) Cp and @ capture all drag-producing loss mechanisms. In
contrast, C and Dy still leave out the pressure-drag contribution.

2) Cp and @ are scalars, and so the orientation of the dx dz surface
element in the Eq. (63) integral is immaterial. In contrast, Eq. (64)
represents a force vector integral and, as written, is strictly correct
only for flat-plate surfaces aligned with the freestream flow.

3) Cyp is strictly positive, and so there are no force-cancellation
problems which often occur with near-field force integration.

2. Boundary Layer and Wake Thicknesses
Various shear layer properties can be given in terms of the

following integral thicknesses and defects:
Mass defect

Pl 8" = /0 " (pet, — pu) dy (65)
Momentum defect
Pt = L ", — wpudy (66)
Kinetic energy defect
Pt = /0 "2 — u)pudy (67)
Density defect
pad” = [ (p. = pucy (68)
Wake kinetic energy excess
Pty = L " (e — w2 pudy (69)

We also note the following useful identity:

8y =206 (70)
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Both 6 and 6* obey the von Kdrmén integral momentum equation and
the corresponding integral kinetic energy equation:

d(p.u2t) _ . du,
dx - peue%%Cf - IOeMe(S dx (71)
d(; pu6*) 3 2 e Qe
—2rere’ 7 = .Cp— 5 —= 72
ax PelUelp Pelhe dx ( )

The density-flux thickness §** term in Eq. (72) represents ramjet
thrust effects and is significant only in very high-speed or non-
adiabatic boundary layers with strong pressure gradients. If this term
is negligible, as with most external aerodynamic flows, from
Eq. (72), we see that, in 2-D flow of unit span, p,u;6* at any location
measures all the upstream dissipation:

Lot () = [ puicodr= o0 @3)
0

The various thicknesses can also be used to specify the various
integral quantities at the Trefftz plane,

F, = / T e20dz (74)

<min

. Zmax |
Ea = / 5/%”251( dz (75)

Zmin

where the z integration would be over the spanwise extent of the
wake.

VIII. Power Balance in Simple Cases

We now examine the various terms in Eq. (37) for simple cases to
relate these to more familiar drag-related quantities.

A. Two-Dimensional Airfoil

In this case, we assume that the airfoil is propelled at a steady speed
by an isolated ideal propulsor that does not interact with the airfoil’s
immediate flowfield. The propulsor provides only the thrust T
necessary to oppose the drag D (equal to profile drag in this 2-D
case). If the ideal propulsor works against the same freestream
velocity as the airfoil, it will expend power Pjgg1yeq = 1V t0 sustain
the thrust. Because there is no induced drag in this 2-D flow, Eq. (37)
reads

Tvoo = Pisolaled = Ea + o (76)

We now choose the Trefftz plane to be sufficiently far downstream so
that E, effectively disappears, and we also replace T with D:

Dvoo = Pisola[ed = qDlolal (77)

Hence, the total dissipation in the flowfield in this case is simply
equal to the drag power DV, which is also the power expended by
the isolated propulsor.

B. Two-Dimensional Airfoil with Wake Ingestion

This case is the same as the preceding case, except that the ideal
propulsor is now placed at the airfoil trailing edge and generates a
“perfect” filled-in wake with u = 0 everywhere. This is consistent
with Eq. (21), which indicates a zero net axial force F,, = 0ifu = 0.
We note that, in this case, Ea = 0 everywhere, so that the same & is
obtained for any Trefftz plane location and, in particular, all
contributions to ® occur only on the airfoil surface. Equation (37)
then gives the wake-ingesting propulsor power as

Pingeat = quurface (78)

where ®,,... denotes the dissipation occurring in the airfoil surface
boundary layers. Note that there is no need to consider or even define
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thrust or drag, which are not even well defined for this case.
Nevertheless, the propulsive power remains well defined.

It is of particular interest to compare the noningesting power from
Eq. (77) with the ingesting power from Eq. (78):

Pisolatcd - Pingcst = q)total - q>surfacc (79)
Referring to Fig. 4 or Fig. 7, it is evident that this power difference is
simply ®,,., which is the additional & contribution of the

noningested airfoil wake, which is also equal to the kinetic energy
flux off the trailing edge (TE):

Pisnlaled - Pingest = E (80)

arg

Hence, the benefit of wake ingestion is that it eliminates the
downstream dissipation in the wake, equal to Ea at that location,
which would otherwise occur. For maximum benefit, the ingestion
must be done at the point of maximum E,,, which is at or near the
trailing edge for most airfoils.

C. Flat Plate with Boundary Layer and Wake

We now compute the drag on a laminar flat plate of unit span and
chord c in three ways, summarized next. In this case, the edge
velocity u, = V, is constant, and the surface C, and Cy, coefficients
are known in terms of the x-based Reynolds number:

1¢p = 0.332(u,x/v) /2 8D

Cp = 0.261 (u,x/v)"1/2 (82)

1) Skin friction integration

D= / pou2kC; dx (83)
0

=0.664p., V2 cRe;? (84)

2) Dissipation integration on surface and wake (Trefftz plane far
downstream)

DVOO=/Cpeu3CDdX+/oopeuidex (85)
0 c

=0.522p, V3,cRe:'* + @, (86)

3) Dissipation integration on surface, plus wake kinetic energy flux
(Trefftz plane at trailing edge)

Dvoo = /C peuchdx + (%peug(sK)x=c (87)
0

=0.522p. V3.cRe;'* + E (88)

aTE

Relations (86) and (88) are clearly the same, since @, = (E)e
as diagrammed by Fig. 7. They must also be consistent with Eq. (84).

T<—> Tsolated propulsor
Wake—ingesting propulsor

—

1
L Puake

Dol
Dsurface Dsurface

Fig. 7 Comparison of dissipation in isolated and wake-ingesting
propulsors for 2-D airfoil.

Setting the two drag results Egs. (84) and (88) equal, we get a
numerical value for (E,)g, or equivalently for @,

0.522p., V3,cRec"> + E, = 0.664p, V3 cRe:'*  (89)

E,=0.142p. V3 cRe:'? (90)

For the general airfoil case, it may be more convenient to compute or
estimate E, using the identity Eq. (70),

R 2
£u=lpase = pad ~ ot =lpaie (7 =1) oD

and an assumed value of H*, which takes on the following typical
narrow range of values:

1.50, laminar or turbulent separated flow
H* ~ { 1.60, laminar attached flow 92)
1.75, turbulent attached flow

The trailing edge E,, value Eq. (90) indicates that for a laminar flat
plate, a quite substantial fraction 0.142/0.664 = 21% of the energy
losses occur in the wake. This can be seen in Fig. 8, which shows the
kinetic energy defect p,u36* distribution along the plate, which
measures the accumulated dissipation via Eq. (73). The implication
is that an ideal wake-ingesting propulsor for a laminar flat plate could
have up to 21% less power consumption than a noningesting
propulsor.

D. Two-Dimensional Airfoil

In the case of an airfoil, the skin friction integration Eq. (84) must
now be extended to include the pressure drag and must now be
carried into the wake:

¢ 00 d
D:/ peug%cfdwr/ —pou,8* L dx 93)
0 0 dx

In contrast, the dissipation integrals (86) or (88) still have exactly the
same form:

DVm=/Cpeu§CDdx+/ p,u3Cp dx (94)
0 c

Figure 9 shows the p,u6* distributions for the top and bottom
surface and wake of a transonic airfoil at high Reynolds number. In
this case, the wake dissipation is about 13% of the total, which is still
large enough to make wake recovery an attractive possibility. The
airfoil also has laminar flow up to x = 0.7 on the bottom surface,
which is responsible for the very low p,u36* growth up to that point.

Plate
Ma = 0.0500 a = 0.0000° C_ = -0.0000 Sidel X, = 1.0000
Re = 0.500%10° N = 9.00 Cp = 0.00385 Stide2 X, = 1.0000
0.0D20
//_’_——_
0.0015
.
m® 0,0010
Q
0.0005
0.0000
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

X
Fig. 8 Kinetic energy defect p u’0* distribution on a laminar flat plate.
This shows the accumulating dissipation on the surface and in the wake
that starts atx = 1.
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0.006
0.005 7
0.004
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Fig. 9 Transonic airfoil p,u20* distributions on top and bottom
surfaces and wake halves, and for wake total (dashed line).

E. Dissipation and Skin Friction Coefficients in Shear Layers
1. Dependence on Shape Parameter, Reynolds Number

The boundary-layer shape parameter H = §* /6 directly indicates
the state of the boundary layer and, in particular, how close the
boundary layer is to separation. Figure 10 shows Cp and C,/2
dependence on H for laminar boundary layers. These scale as 1/Rey,
so that the ReyCp and Re,C /2 values are independent of Rey. Note
that the laminar Cj, is very nearly independent of H, meaning that
laminar boundary-layer losses are almost entirely dependent on the
Reynolds number and nearly independent of pressure gradient.

Figure 11 shows the Cp and C;/2 dependence on H for turbulent
boundary layers. The Cp now has a clear minimum, close to the H
value corresponding to a constant-pressure flow, and increases
for both accelerating and decelerating flow. The rapid increase with
H essentially represents pressure drag, which in the profile-drag
expression Eq. (93) is captured by the second term. It should also be
noted that the dependence of Cp on Re, for turbulent flow is much
weaker than the Cpp, ~ 1/Req dependence for laminar flow.

The approximate spreading half-angle of 7 deg observed for a free
shear layer [15] implies a dissipation coefficient of approximately

Cp ~0.02 (95)

This corresponds to an asymptotic value of Cp, for H > 1inFig. 11.

2. Dependence on Flow Velocity

The dissipation expression Eq. (63) shows that, for any given Cp
value, the physical boundary-layer losses scale as u>. This implies
that “overspeeds,” or regions of high local u, are very costly.
Conversely, in regions of low velocity, such as in slat coves that have
a fully separated recirculating flow, the losses are quite modest
because of the small u? factor.
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o
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o
e

0.05 Ree Cf/2

0

2 25 3 3.5 4
H

Fig. 10 Re,Cp and ReyC;/2 versus H for laminar boundary layers.
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Fig. 11 Cp and C;/2 versus H for turbulent boundary layers for
Re, = 200, 1000, 5000.

F. Dissipation-Based Drag Buildup

The u} factor in Eq. (63) has significant implications for

excrescence and interference drag. Traditional excrescence drag
estimates, as discussed by Hoerner [16] for example, scale the
individual drag contributions with u? in accordance with a local
dynamic-pressure argument. Any discrepancy is typically attributed
to some uncertain additional interference drag. However, Eq. (63)
clearly shows that a u? scaling is more appropriate. Furthermore, if
no additional dissipation-causing flow structures (e.g., flow
separation) are created, there should be no additional uncertain
interference drag.

To illustrate the difference between force-based and dissipation-
based drag buildup, consider a configuration consisting of a large and
a small body, shown in Fig. 12. Their relative sizes are such that,
when the bodies are far apart, the drags are 100 and 1 for a total drag
of D =101.

When the small body is placed near the large body where the local
velocity is V, = 2, as shown in Fig. 13, the force-based drag buildup
gives

D=Y"D,=100+4=104 (96)

whereas the dissipation-based buildup gives

1
D=KZ¢,¢=IOO+8=108 97)

which is a rather different result.

Viscous CFD calculations indicate that the dissipation-based
buildup Eq. (97) is far more accurate than the force-based buildup
Eq. (96). The reason is that Eq. (96) neglects the additional pressure
drag on the large body, due to the potential source flow created by the
viscous displacement on the small body. Traditionally, this might be

!
| v=1 D=1 !
| — !
| @ =1 |
| [

|
| | | D=%D,=101

‘éq:]\ |
|
|
T o,

| ==—£f=
| D=5t =101
|
|
|
|
|
|
|

Fig. 12 Drag buildup for two isolated bodies by force summation (top
box) and dissipation summation (bottom box).
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Fig. 13 Drag buildup for two closely interacting bodies by force
summation (top) and dissipation summation (bottom). The small body is
in the large body’s near field and sees a doubled local velocity.

labeled interference drag of some possibly uncertain origin, but the
mechanism and effect is captured quite well by the dissipation-based
drag buildup Eq. (97).

G. Evaluation of Alternative Propulsion Systems

The efficiency benefit of wake ingestion is almost universally
exploited in marine propulsion and has also been considered for
aeronautical applications. The previous analyses, such as that of
Smith [17], have typically computed the propulsor power reduction
with the assumption that the ingested airframe boundary layer is
given. However, computing or estimating the benefit of integrated/
ingesting propulsion systems is far more complex, because the
airframe flow is itself modified. An attractive feature of the present
energy-based analysis is that comparison of such alternative
propulsion systems is considerably simplified and the competing
effects are clearly identified.

Figure 14 shows a traditional isolated propulsor and an alternative
integrated propulsor driving a wing. The situation is a more complex
version of the one in Figure 7 for two reasons: 1) the integrated
propulsor now changes the airframe losses, and 2) there is now an
excess thrust for both cases, typically needed to balance the induced
drag and profile drag from other parts of the aircraft. The upper right
drawing in Fig. 14 shows the pros, or the loss mechanisms that were
eliminated or reduced in switching to the integrated system. These
gains consist of removal of the two shear layers and their dissipation,
and reduction of the excess wake kinetic energy by filling in of the
large upper-surface boundary-layer momentum defect. The lower
right drawing shows the cons, or the loss mechanisms that were
added in the switch. Quantitative evaluation or estimation of all the
pro and con changes shown in Fig. 14 would then give the net
resulting change in the flight power:

P
Before E’ %
(Isolated propusion)

Pros E V. JL:E
AD <0 ——< :

N e e

(Integrated propusion)

Fig. 14 Changes resulting from switch from isolated to distributed
propulsion while keeping the same net streamwise momentum defect and
force. Power change AP is the net result of negative (pro) and positive
(con) A® and AE changes.

AP=) " AE+) A® (98)

The sums on the right-hand side can, in principle, be carried out to
any level of detail deemed appropriate. In addition to the first-level
changes shown in Fig. 14, one could also account for changes in
dissipation ®,,; on the fan blading (e.g., fan profile efficiency),
change in the total weight or span loading and resulting change in
induced power EU, changes in shock losses g, if any, modifi-
cation to the upper-cowl boundary-layer dissipation, etc.

IX. Conclusions

A control volume analysis of the flow about an aircraft has been
performed, focusing on mechanical energy. The result is a concise
relation between all the power sources and sinks in a flowfield, which
has a number of useful applications:

1) The quantities which directly influence flight power require-
ments are clearly identified.

2) It is fully consistent with previous analyses based on mo-
mentum.

3) There is no need to define the rather ambiguous thrust or drag in
configurations with tightly integrated propulsion systems.

4) The wake energy loss is clearly decomposed into independent
contributions due to axial and transverse wake velocities without the
need to separately identify rotational and irrotational regions of the
Trefftz plane. This eliminates the ambiguity between thrust, profile
drag, and induced drag in configurations where the viscous wakes
and the vortex wakes are not distinct.

5) For traditional drag buildup analyses, using the power approach
appears to be more reliable in that it accounts for interference effects
that are not captured by the force approach.
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